
Real-Time Hatching
Emil Praun Hugues Hoppe Matthew Webb Adam Finkelstein

Princeton University Microsoft Research Princeton University Princeton University

Abstract
Drawing surfaces using hatching strokes simultaneously conveys
material, tone, and form. We present a real-time system for non-
photorealistic rendering of hatching strokes over arbitrary surfaces.
During an automatic preprocess, we construct a sequence of mip-
mapped hatch images corresponding to different tones, collectively
called a tonal art map. Strokes within the hatch images are scaled
to attain appropriate stroke size and density at all resolutions, and
are organized to maintain coherence across scales and tones. At
runtime, hardware multitexturing blends the hatch images over the
rendered faces to locally vary tone while maintaining both spatial
and temporal coherence. To render strokes over arbitrary surfaces,
we build a lapped texture parametrization where the overlapping
patches align to a curvature-based direction field. We demonstrate
hatching strokes over complex surfaces in a variety of styles.

Keywords: non-photorealistic rendering, line art, multitexturing,
chicken-and-egg problem

1 Introduction
In drawings, hatching can simultaneously convey lighting, suggest
material properties, and reveal shape. Hatching generally refers to
groups of strokes with spatially-coherent direction and quality. The
local density of strokes controls tone for shading. Their character
and aggregate arrangement suggests surface texture. Lastly, their
direction on a surface often follows principal curvatures or other
natural parametrization, thereby revealing bulk or form. This paper
presents a method for real-time hatching suitable for interactive
non-photorealistic rendering (NPR) applications such as games,
interactive technical illustrations, and artistic virtual environments.

In interactive applications, the camera, lighting, and scene
change in response to guidance by the user, requiring dynamic
rearrangement of strokes in the image. If strokes are placed
independently for each image in a sequence, lack of temporal
coherence will give the resulting animation a flickery, random look
in which individual strokes are difficult to see. In order to achieve
temporal coherence among strokes, we make a choice between
two obvious frames of reference: image-space and object-space.
Image-space coherence makes it easier to maintain the relatively
constant stroke width that one expects of a drawing. However, the
animated sequence can suffer from the “shower-door effect” – the
illusion that the user is viewing the scene through a sheet of semi-
transmissive glass in which the strokes are embedded. Furthermore,
with image-space coherence, it may be difficult to align stroke
directions with the surface parametrization in order to reveal shape.
Instead, we opt for object-space coherence. The difficulty when
associating strokes with the object is that the width and density
of strokes must be adjusted to maintain desired tones, even as the
object moves toward or away from the camera.

URL: http://www.cs.princeton.edu/gfx/proj/hatching

Figure 1: 3D model shaded with hatching strokes at interactive rate.

In short, hatching in an interactive setting presents three main
challenges: (1) limited run-time computation, (2) frame-to-frame
coherence among strokes, and (3) control of stroke size and density
under dynamic viewing conditions. We address these challenges by
exploiting modern texture-mapping hardware.

Our approach is to pre-render hatch strokes into a sequence of
mip-mapped images corresponding to different tones, collectively
called a tonal art map (TAM). At runtime, surfaces in the scene
are textured using these TAM images. The key problem then is to
locally vary tone over the surface while maintaining both spatial
and temporal coherence of the underlying strokes. Our solution
to this problem has two parts. First, during offline creation of the
TAM images, we establish a nesting structure among the strokes,
both between tones and between mip-map levels. We achieve tone
coherence by requiring that strokes in lighter images be subsets of
those in darker ones. Likewise, we achieve resolution coherence by
making strokes at coarser mip-map levels be subsets of those at finer
levels. Second, to render each triangle face at runtime we blend
several TAM images using hardware multitexturing, weighting each
texture image according to lighting computed at the vertices. Since
the blended TAM images share many strokes, the effect is that, as an
area of the surface moves closer or becomes darker, existing strokes
persist while a few new strokes fade in.

As observed by Girshick et al. [3], the direction of strokes
drawn on an object can provide a strong visual cue of its shape.
For surfaces carrying a natural underlying parametrization, TAMs
may be applied in the obvious way: by letting the rendered
strokes follow isoparameter curves. However, to generate hatching
over a surface of arbitrary topology, we construct for the given
model a lapped texture parametrization [17], and render TAMs
over the resulting set of parametrized patches. The lapped texture
construction aligns the patches with a direction field on the surface.
This direction field may be either guided by the user to follow
semantic features of the shape, or aligned automatically with
principal curvature directions using a method similar to that of
Hertzmann and Zorin [7].

The specific contributions of this paper are:

• the introduction of tonal art maps to leverage current texturing
hardware for rendering strokes (§3),

• an automatic stroke-placement algorithm for creating TAMs
with stroke coherence at different scales and tones (§4),

• a multitexturing algorithm for efficiently rendering TAMs with
both spatial and temporal coherence (§5), and

• the integration of TAMs, lapped textures and curvature-based
direction fields into a real-time hatching system for shading 3D
models of arbitrary topology (§6).

2 Previous work
Much of the work in non-photorealistic rendering has focused on
tools to help artists (or non-artists) generate imagery in various
traditional media or styles such as impressionism [5, 12, 14],
technical illustration [4, 19, 20], pen-and-ink [1, 21, 22, 26, 27],
and engraving [16]. Our work is applicable over a range of styles
in which individual strokes are visible.

One way to categorize NPR methods would be to consider the
form of input used. One branch of stroke-based NPR work uses
a reference image for color, tone, or orientation, e.g. [5, 21, 22].
For painterly processing of video, Litwinowitcz [12] and later
Hertzmann and Perlin [6] addressed the challenge of frame-to-
frame coherence by applying optical flow methods to approximate
object-space coherence for strokes. Our work follows a branch of
research that relies on 3D models for input.

Much of the work in 3D has focused on creating still images
of 3D scenes [1, 2, 20, 24, 25, 26, 27]. Several systems have
also addressed off-line animation [1, 14], wherein object-space
stroke coherence is considerably easier to address than it is for
processing of video. A number of researchers have introduced
schemes for interactive non-photorealistic rendering of 3D scenes,
including technical illustration [4], “graftals” (geometric textures
especially effective for abstract fur and leaves) [8, 10], and real-
time silhouettes [2, 4, 7, 13, 15, 18]. While not the focus of our
research, we extract and render silhouettes because they often play
a crucial role in drawings.

In this paper, we introduce tonal art maps, which build on two
previous technologies: “prioritized stroke textures” and “art maps.”
Described by both Salisbury et al. [21] and Winkenbach et al. [26],
a prioritized stroke texture is a collection of strokes that simulta-
neously conveys material and continuously-variable tone. Priori-
tized stroke textures were designed for creating still imagery and
therefore do not address either efficient rendering or temporal co-
herence. One might think of TAMs as an organization for sampling
and storage of prioritized stroke textures at a discrete set of scales
and tones, for subsequent real-time, temporally-coherent rendering.
TAMs also build on the “art maps” of Klein et al. [9], which adjust
screen-space stroke density in real time by using texture-mapping
hardware to slowly fade strokes in or out. TAMs differ from art
maps in two ways. First, art maps contain varying tone within each
image, whereas TAMs are organized as a series of art maps, each
establishing a single tone. Second, TAMs provide stroke coherence
across both scales and tones in order to improve temporal coherence
in the resulting imagery.

Three previous systems have addressed real-time hatching in 3D
scenes. Markosian et al. [13] introduced a simple hatching style
indicative of a light source near the camera, by scattering a few
strokes on the surface near (and parallel to) silhouettes. Elber [2]
showed how to render line art for parametric surfaces in real
time; he circumvented the coherence challenge by choosing a fixed
density of strokes on the surface regardless of viewing distance.
Finally, Lake et al. [11] described an interactive hatching system
with stroke coherence in image space (rather than object space).

3 Tonal Art Maps
Drawing hatching strokes as individual primitives is expensive,
even on modern graphics hardware. In photorealistic rendering, the
traditional approach for rendering complex detail is to capture it
in the form of a texture map. We apply this same approach to the
rendering of hatching strokes for NPR. Strokes are pre-rendered
into a set of texture images, and at runtime the surface is rendered
by appropriately blending these textures.

Whereas conventional texture maps serve to capture material
detail, hatching strokes in hand-drawn illustrations convey both
material and shading. We therefore discretize the range of tone
values, and construct a sequence of hatch images representing these
discrete tones. To render a surface, we compute its desired tone
value (using lighting computations at the vertices), and render the
surface unlit using textures of the appropriate tones. By selecting
multiple textures on each face and blending them together, we can
achieve fine local control over surface tone while at the same time
maintaining spatial and temporal coherence of the stroke detail. We
present the complete rendering algorithm in Section 5.

Another challenge when using conventional texture maps to
represent non-photorealistic detail is that scaling does not achieve
the desired effect. For instance, one expects the strokes to have
roughly uniform screen-space width when representing both near
and far objects. Thus, when magnifying an object, we would like
to see more strokes appear (so as to maintain constant tone over the
enlarged screen-space area of the object), whereas ordinary texture
mapping simply makes existing strokes larger. The art maps of
Klein et al. [9] address this problem by defining custom mip-map
images for use by the texturing hardware. In this paper, we use a
similar approach for handling stroke width. We design the mip-map
levels such that strokes have the same (pixel) width in all levels.
Finer levels maintain constant tone by adding new strokes to fill the
enlarged gaps between strokes inherited from coarser levels. We
perform this mip-map construction for the stroke image associated
with each tone. We call the resulting sequence of mip-mapped
images a tonal art map (TAM).

A tonal art map consists of a 2D grid of images, as illustrated in
Figure 2. Let (�, t) refer to indices in the grid, where the row index
� is the mipmap level (� = 0 is coarsest) and the column index t
denotes the tone value (t = 0 is white).

Since we render the surface by blending between textures corre-
sponding to different tones and different resolutions (mipmap lev-
els), it is important that the textures have a high degree of coher-
ence. The art maps constructed in [9] suffered from lack of coher-
ence, because each mipmap level was constructed independently
using “off-the-shelf” NPR image-processing tools. The lack of co-
herence between the strokes at the different levels create the impres-
sion of “swimming strokes” when approaching or receding from the
surface.

Our solution is to impose a stroke nesting property: all strokes
in a texture image (�, t) appear in the same place in all the darker
images of the same resolution and in all the finer images of the same
tone – i.e. every texture image (�′, t′) where �′≥� and t′≥ t (through
transitive closure). As an example, the strokes in the gray box in
Figure 2 are added to the image on its left to create the image on its
right. Consequently, when blending between neighboring images
in the grid of textures, only a few pixels differ, leading to minimal
blending artifacts (some gray strokes).

Figure 3 demonstrates rendering using tonal art maps. The unlit
sphere in Figure 3a shows how the mip-maps gradually fade out
the strokes where spatial extent is compressed at the parametric
pole. The lit cylinder in Figure 3b shows how TAMs are able
to capture smoothly varying tone. Finally, Figure 3c shows the
combination of both effects. The texture is applied to these models
using the natural parametrization of the shape and rendered using
the blending scheme described in Section 5.

Figure 2: A Tonal Art Map. Strokes in one image appear in all the images to the right and down from it.

4 Automatic generation of line-art TAMs
The concept of tonal art maps is quite general and can be used to
represent a variety of aesthetics (e.g. pencil, crayon, stippling, and
charcoal). The grid of images in the TAM can be either hand-drawn
or generated automatically. In this section we present our technique
for automatically generating a line-art TAM.

Recall that the strokes in the resulting TAM should satisfy the
nesting property described in the previous section. Our approach
is to fill the TAM images in top-to-bottom, left-to-right order. For
each column, we begin by copying all the images from the column
to its left (or setting all images to white when starting at the leftmost
column). This ensures that all strokes in images with lighter tone
also appear in images with darker tone. Within the column, we
then consider each image in top-to-bottom (coarse-to-fine) order.
We repeatedly add strokes to the image until the mean image tone
reaches the tone value associated with that column. Each stroke
drawn in the image is also added to all the lower (finer) images
in the current column. This ensures that strokes in coarser images
always appear in finer images.

The naı̈ve approach of random stroke selection leads
to a non-uniform distribution of strokes, as illustrated
in the figure to the right. Typically an artist would
space the strokes more evenly. To get even spacing, we
generate multiple randomly-placed candidate strokes and select the
“best-fitting” one. In the case of the TAM shown in Figure 2, the
number of candidates is set to 1000 for the light-tone images where
spacing is important, and is gradually reduced to 100 for the dark-
tone images where strokes overlap. The length of each candidate
stroke is randomly set to between 0.3 and 1.0 times the width of the
image, and its orientation has a tiny random perturbation from the
mean. Other TAMs shown in Figure 5 use different parameters.

Our measure of “best-fitting” includes both progress towards the
desired tone value and hatching uniformity. For each candidate
stroke si we measure its progress as follows. For the hatch image
at each level � of the TAM that would receive si, we find the
average tones, T� and Ti

�, respectively, of the hatch image drawn

Figure 3: Rendering using tonal art maps. (a) illustrates resolution
changes using custom mipmaps; (b) shows smooth changes in tone
and (c) shows their interplay on a shaded sphere.

with all previously chosen strokes and with si added. The sum∑
�

(Ti
� − T�) expresses the darkness that this stroke would add to

all the hatch images in this column – essentially a measure of the
progress toward the desired tone at all levels of the TAM.

To achieve greater hatching uniformity, we maintain an image
pyramid for each unfilled image in the TAM column, and find the
cumulative effect of adding si at all levels p of these pyramids. Even
though si might lie next to, but not overlap, an existing stroke at fine
levels of a pyramid, it will overlap at coarser levels. Thus we find
the average tones Tp� and Ti

p� (without and with si, respectively)
over each level p of every pyramid, and sum

∑
p,� (Ti

p� − Tp�).
Finally, this simultaneous measure of progress and hatching

uniformity favors longer strokes over shorter strokes, even at the
expense of overlapping a previous stroke. Therefore, we normalize
the “goodness” of the stroke by its length, measuring the goodness
of si as: 1

||si||
∑

p,� (Ti
p� − Tp�). With optimized stroke placement,

the hatch images are much more uniform, as illustrated in Figures 2.
Artists often use parallel strokes to represent lighter tones, and

switch to cross-hatching for darker tones. Our TAM construction
process supports cross-hatching, as demonstrated in Figure 2. For
some number of leftmost columns (e.g. 3), we add only horizontal
strokes. Then, beginning with some middle column (e.g. 4th), we
add only vertical strokes for cross-hatching. Finally, some number
of columns later (e.g. 6th), we add both vertical and horizontal
strokes to best fill the remaining gaps.

In our current implementation, stylistic variation (Figure 5)
between different TAMs comes from the variation in angle, cross-
hatching schedule, range of lengths, and choice of stroke (given
as a grayscale image). For now we only use grayscale strokes, to
enable an efficient rendering scheme described in the next section.
The finest hatch images are 256× 256, and are toroidal to allow for
tiled rendering over parametrized surfaces.

5 Rendering with TAMs
The nesting structure in the TAM image grid helps to provide tem-
poral coherence during animation. The mip-mapping feature of
hardware texturing automatically blends between different resolu-
tion levels of the TAM. What is missing, however, is a smooth tran-
sition in the tonal dimension of the TAM. We achieve smooth tran-
sitions using a 6-way blending scheme that we will describe shortly.
However, we first present three intermediate approximations.

First, if for each face we select a single tone
column from the TAM (equivalent to flat shading
with a quantized palette), our rendering suffers
from both spatial discontinuities across edges
(see adjacent figure) and temporal discontinuities
(“pops” in tone). Second, the analog of conven-
tional flat shading is to interpolate between two

consecutive tone columns using a single blend ratio for all pixels
in a face. This effect is temporally smooth, but looks faceted. For
spatial coherence we need to blend vertex contributions across each
face. Thus, our third scheme selects a single tone column per vertex
and blends tones across faces. This scheme is spatially smooth but
suffers from temporal discontinuities due to tonal value rounding.
(This third scheme is equivalent to Gouraud-shading with severely
quantized vertex lighting computations.)

To obtain both spatial and temporal coherence, we bracket
the continuous tone at each mesh vertex (blending between two
consecutive tone images). Then, for each mesh face, we gather the
blended textures at the three vertices and spatially combine them
across the face (using a barycentric sum as in Gouraud shading).
Since both the 2-way tonal blend and 3-way spatial blend are linear
combinations, this amounts to linearly blending 6 images across
the face (or 12 images when taking into account mip-mapping).
The process is illustrated in Figure 4. While this complex blend
operation may initially appear daunting, there are several ways of
implementing it efficiently on commodity graphics hardware. We
next present two such schemes.

Single-pass 6-way blend. The 6-way blend can be implemented
in a single rendering pass. Several existing graphics card support 2
texture reads during rasterization (and that number will soon jump
to 4). Exploiting the fact that our TAM images are grayscale, we
pack 6 consecutive tone images in the R,G,B channels of two texture
images. The diffuse and specular fragment colors encode the blend
ratios. We set these color values at vertices, and the hardware
interpolates them at pixel locations. The 6 tones are combined
by adding two dot products between the texture colors and the
fragment colors. The first multitexture stage performs the two dot
products, while the second stage adds the results.

Hertzmann and Zorin [7] observe that effective drawings can use
a limited palette of tones, and their scheme targets 4 tone levels.
For our examples, we chose to define 6 tone levels, so that the
TAM images can be packed in two textures used over all triangles.
Since the texture state remains constant, we use triangle strips for
efficiency. We store vertex geometry and texture coordinates on
the graphics card in vertex arrays, whereas the diffuse and specular
vertex colors must be copied from main memory for every frame.
With newly-emerging graphics cards, however, these could also be
computed on the GPU using vertex shaders.

Our set of 6 tones do not include white – the “paper” color.
However, our interpolation method provides for an implicit white
as follows. Since the coefficients of a convex combination sum
to 1.0, by specifying 6 independent coefficients we can implicitly
blend 7 tones – the 7th tone being 0.0 (black). Since we prefer white,
we negate the texture inputs before the dot products, as well as the
resulting sum. Thus, the images in our paper are rendered using
6-column TAMs (containing strokes) as well as implicit white.

When hatching surfaces of arbitrary topology using lapped
textures, rendering is complicated by the need to modulate each
patch texture by the patch outline alpha mask. We address this
problem in Section 6.

Triple-pass 2-way blend. If the TAM images contain colored
strokes, or if the artist desires more than 6 TAM tone images, an
alternative scheme is to accumulate texture over each face in 3
passes. The scheme begins by drawing the whole mesh in black.
Next it renders each triangle 3 times, adding the contribution of
each vertex to the framebuffer. For each vertex we interpolate
between the two TAM columns that bracket the vertex tone. A
simple optimization is to organize the faces in triangle fans around
each vertex.

Tone thresholding. The 6-way blend scheme obtains coherence,
but results in the appearance of some gray-toned strokes. Such
strokes look natural for a variety of artistic styles including pencil

(a) (b) (c) (d)

Figure 4: Illustration of the blending of 6 TAM images on a triangle
face. Each column (a–c) corresponds to a vertex and shows the
images for the floor and ceiling of the vertex tone. The resulting
sum is shown in (d).

and charcoal, but are not ideal for some ink-based strokes. To more
closely match ink strokes, we have experimented with thresholding
the tone values written to the framebuffer. For the single-pass
blending scheme, we can configure the multitexturing register
combiners to obtain the transfer function clamp(8t − 3. 5), which
closely models a step function. This transfer function succeeds
in making new strokes appear as gradually lengthening black
strokes instead of gradually darkening gray strokes. Unfortunately,
as shown on the accompanying video, it has the side-effect of
introducing jaggies along the carefully antialiased edges of the
visible strokes. It may be possible to alleviate these artifacts
through framebuffer supersampling.

6 Applying TAMs to arbitrary surfaces
For parametrized surfaces, one can apply the TAM rendering
algorithm described in Section 5 directly. For example, the sphere
and cylinder shown in Figure 3 were textured using a simple tiling
of a toroidal TAM. However, for surfaces that lack natural global
parametrizations, or for which this parametrization is too distorted,
we use lapped textures.

To review, lapped textures were introduced by Praun et al. [17]
as a way to texture surfaces of arbitrary topology without the need
for a continuous global parametrization. The key observation is
that the surface can be covered by a collection of overlapping
patches. All the patches are constructed as topological discs, and
are parameterized over the plane with little distortion. For many
textures, including our TAMs, the boundaries between the patches
are not noticeable, being masked by the high frequency detail of
the textures. Visual masking is further helped by constructing the
patches with irregularly shaped boundaries and with small alpha
ramps that “feather” the boundaries.

Hatch images are ideal for use with
lapped textures, because they lack low-
frequency components (which otherwise
might reveal the patch boundaries). To
render a surface as a lapped texture using
TAMs, we apply the algorithm is Section 5
for each of the patches, shown in random
tone to the right. We modify the origi-
nal lapped texture rendering algorithm to
adapt it for hatch rendering by decoupling
the patch outline from the stroke textures,
storing them separately. When rendering a
patch, we first render its triangles textured
using the patch outline mask, in order to
store this mask into the alpha channel of
the framebuffer. Next, when rendering the
patch triangles using the TAM texture images, the blend operation
is set to add the pixels being rendered, multiplied by the alpha value
already present in the framebuffer. (During this operation, only the
color channels of the framebuffer are written.) As an alternative

Figure 5: Results. Six models rendered with different TAMs, indicated in the inset texture patches.

useful for rendering into visuals that do not have an alpha channel,
the modulation by the patch outline may be done using a texture
unit. To implement this on graphics cards that allow only two tex-
ture reads per pixel, the consecutive tonal levels to be averaged have
to be packed inside a single texture (see Section 5).

Decoupling the patch shape from the hatch textures presents
several advantages. First, it reduces memory consumption, since
we only have to store the outline once, and not replicate it for every
image in the TAM. Second, having a separate texture transform for
the hatch texture allows us to rotate and scale the strokes within
a patch at runtime, without the need to recompute the lapped
parametrization. Third, the stroke textures can be tiled in order to
cover large patches. Finally, as a consequence of having a different
scale for the outline than for the strokes, we can place different size
patches on differents parts of the surface (smaller patcher in areas
with high curvature, larger patches in flat regions), achieving better
coverage while using just a single patch outline. In the original
lapped textures work, having different size patches could only be
achieved using multiple outlines.

Anisotropic lapped textures need a direction field for the
parametrization. In our project, the field governs the direction of
strokes on the surface. Girshick et al. [3] observed that stroke di-
rection augments the viewer’s perception of shape, and that prin-
cipal curvatures are a natural choice for direction. Hertzmann and
Zorin [7] point out that in many drawings the hatch direction fol-
lows the curvature of the overall shape, whereas fine details are
expressed through tonal variation. Consequently, we compute cur-
vatures on the faces of a simplified version of the mesh, smooth
the resulting direction field, and then resample it on the original
mesh. For every face of the coarse mesh, we gather the set of ver-

tices adjacent to any of the face’s vertices. We then fit a quadric
through these vertices, and finally compute principal curvature di-
rections for this quadric. The error residual from the fit, as well
as the ratio of the curvatures, provides a measure of confidence for
the computed directions. Now that we have defined these direc-
tions for every face, we smooth the field, blending directions from
high-confidence areas into low-confidence areas. We use a global
non-linear optimization similar to the one described by Hertzmann
and Zorin [7], but adapted for 180◦ rather than 90◦ symmetries.

7 Results and Discussion
Figure 5 shows six models rendered by our
system, each using using a different style
TAM (shown inset). As shown to the right,
by simply changing the tone values in the
columns of the TAM and adjusting a tone
transfer function, the renderer can also be
used to produce black-and-white crayon on
gray paper (above), or to simulate a white-
on-black “scratchboard” style (below). The
original models range from 7,500 to 15,000
faces, while overlapping patches due to lapped
textures increase the range by roughly 50%.
Our prototype renders these models at 20 to 40
frames per second on a 933MHz Pentium III
with OpenGL/GeForce2 graphics. To use the
efficient rendering scheme described in Section 5 we have restricted
our TAMS to grayscale; however, the emergence of new graphics
cards with more multitexture stages will enable rendering of color
TAMs with comparable frame rates.

The direction field on the “rocker arm” model (Figure 5, upper-
middle) was specified by hand in order to follow semantic features
of the shape, whereas the rest of the models used direction fields
computed with the method described in Section 6.

As demonstrated on the accompanying video tape, the strokes
exhibit temporal coherence when we animate the models and light.
Furthermore, the hatching density is roughly uniform across each
model, regardless of the scale of the model in the image plane (for
example, see the venus in Figure 5).

While it is not the focus of our research, we identify silhouette
edges using the method of Sander et al. [23] and draw them as
simple polylines.

8 Summary and future work
We introduced the tonal art map representation, and showed
that it permits real-time rendering of stroke-based textures. We
described a texture blending scheme for maintaining spatial and
temporal coherence during changes in view and lighting. Although
it involves interpolating 6 textures on each triangle, we have
demonstrated that the blending can be implemented efficiently on
existing multitexturing hardware. We focused our results on line-
art style renderings, and presented an algorithm for automatically
constructing tonal art maps in that style. When combined with a
lapped texture parametrization, our framework permits real-time
NPR rendering for many complex shapes. There remain a number
of interesting areas for future work:

Stroke growth. Currently, the tone in the tonal art map is adjusted
solely through the number of strokes; one could also consider
adjusting the length and width of the strokes.

Automatic indication. Artists commonly use indication, strokes
drawn in selected areas that imply texture over a broader surface.
Addition of this technique would enhance real-time hatching.

More general TAMs. Although this paper emphasizes line-art
hatching, we believe our framework extends to a much richer set
of artistic styles. In addition, other axes besides tone could be
used to parametrize art maps; a particularly interesting case would
be to construct lighting-dependent textures, such as bricks whose
highlights adjust to relative light position (as demonstrated in [26]).

View-dependent stroke direction. Stroke direction is currently
determined during the parametrization preprocess. It might be
useful to vary stroke direction at runtime as the viewpoint moves.
One ambitious goal would be to attempt to hide direction field
singularities. It is well known that one cannot smoothly comb a
hairy ball statically, but perhaps dynamic combing could keep the
poles hidden from view at all times.

Acknowledgments
The research reported here was supported by Microsoft Research
and a NSF Career Grant. We appreciate the discussion and
guidance of Georges Winkenbach and Lee Markosian, as well as
help from Grady Klein. The models shown are from Julie Dorsey,
Viewpoint, Cyberware, and Stanford University.

References
[1] Deussen, O., and Strothotte, T. Computer-Generated Pen-and-Ink Illustration of

Trees. Proceedings of SIGGRAPH 2000, 13–18.

[2] Elber, G. Interactive Line Art Rendering of Freeform Surfaces. Computer

Graphics Forum 18, 3 (September 1999), 1–12.

[3] Girshick, A., Interrante, V., Haker, S., and Lemoine, T. Line Direction

Matters: An Argument for the Use of Principal Directions in 3D Line Drawings.

Proceedings of NPAR 2000, 43–52.

[4] Gooch, B., Sloan, P.-P. J., Gooch, A., Shirley, P., and Riesenfeld, R. Interactive

Technical Illustration. 1999 ACM Symposium on Interactive 3D Graphics, 31–

38.

[5] Haeberli, P. E. Paint By Numbers: Abstract Image Representations. Proceedings

of SIGGRAPH 90, 207–214.

[6] Hertzmann, A., and Perlin, K. Painterly Rendering for Video and Interaction.

Proceedings of NPAR 2000, 7–12.

[7] Hertzmann, A., and Zorin, D. Illustrating smooth surfaces. Proceedings of

SIGGRAPH 2000, 517–526.

[8] Kaplan, M., Gooch, B., and Cohen, E. Interactive Artistic Rendering.

Proceedings of NPAR 2000, 67–74.

[9] Klein, A., Li, W., Kazhdan, M., Correa, W., Finkelstein, A., and Funkhouser,

T. Non-Photorealistic Virtual Environments. Proceedings of SIGGRAPH 2000,

527–534.

[10] Kowalski, M. A., Markosian, L., Northrup, J. D., Bourdev, L., Barzel, R.,

Holden, L. S., and Hughes, J. Art-Based Rendering of Fur, Grass, and Trees.

Proceedings of SIGGRAPH 99 (August 1999), 433–438.

[11] Lake, A., Marshall, C., Harris, M., and Blackstein, M. Stylized Rendering

Techniques for Scalable Real-Time 3D Animation. Proceedings of NPAR 2000,

13–20.

[12] Litwinowicz, P. Processing Images and Video for an Impressionist Effect.

Proceedings of SIGGRAPH 97, 407–414.

[13] Markosian, L., Kowalski, M. A., Trychin, S. J., Bourdev, L. D., Goldstein, D.,

and Hughes, J. F. Real-Time Nonphotorealistic Rendering. Proceedings of

SIGGRAPH 97, 415–420.

[14] Meier, B. J. Painterly rendering for animation. Proceedings of SIGGRAPH 96,

477–484.

[15] Northrup, J. D., and Markosian, L. Artistic Silhouettes: A Hybrid Approach.

Proceedings of NPAR 2000, 31–38.

[16] Ostromoukhov, V. Digital Facial Engraving. Proceedings of SIGGRAPH 99,

417–424.

[17] Praun, E., Finkelstein, A., and Hoppe, H. Lapped Textures. Proceedings of

SIGGRAPH 2000, 465–470.

[18] Raskar, R., and Cohen, M. Image Precision Silhouette Edges. 1999 ACM

Symposium on Interactive 3D Graphics, 135–140.

[19] Rossl, C., and Kobbelt, L. Line-Art Rendering of 3D Models. Proceedings of

Pacific Graphics 2000.

[20] Saito, T., and Takahashi, T. Comprehensible Rendering of 3D Shapes.

Proceedings of SIGGRAPH 90, 197–206.

[21] Salisbury, M. P., Anderson, S. E., Barzel, R., and Salesin, D. H. Interactive

Pen-And-Ink Illustration. Proceedings of SIGGRAPH 94, 101–108.

[22] Salisbury, M. P., Wong, M. T., Hughes, J. F., and Salesin, D. H. Orientable

Textures for Image-Based Pen-and-Ink Illustration. Proceedings of SIGGRAPH

97, 401–406.

[23] Sander, P., Gu, X., Gortler, S., Hoppe, H., and Snyder, J. Silhouette clipping.

Proceedings of SIGGRAPH 2000, 335–342.

[24] Sousa, M. C., and Buchanan, J. W. Observational Model of Blenders and Erasers

in Computer-Generated Pencil Rendering. Proceedings of Graphics Interface

’99, 157 – 166.

[25] Sousa, M. C., and Buchanan, J. W. Computer-Generated Graphite Pencil Ren-

dering of 3D Polygonal Models. Computer Graphics Forum 18, 3 (September

1999), 195–208.

[26] Winkenbach, G., and Salesin, D. H. Computer-generated pen-and-ink illustra-

tion. Proceedings of SIGGRAPH 94, 91–100.

[27] Winkenbach, G., and Salesin, D. H. Rendering Parametric Surfaces in Pen and

Ink. Proceedings of SIGGRAPH 96, 469–476.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

